Cases in Drug Interactions with Anticoagulation Therapy

University of Connecticut
School of Pharmacy

Philip M. Hritcko, Pharm.D., CACP
Assistant Dean for Experiential Education &
Associate Clinical Professor
University of Connecticut
School of Pharmacy

Faculty Disclosure

Dr. Hritcko has no actual or potential conflicts of interest associated with this presentation

Learning Objectives

- Identify clinically significant drug interactions with anticoagulation therapy
- Discuss drug interactions that patients may hear about, but are generally not clinically significant
- Analyze cases to determine if a drug interaction is clinically significant
- Formulate plans for the identified drug interactions in simulated cases
- Formulate monitoring parameters for the identified drug interactions in the simulated cases

Magnitude of Warfarin Interactions

- Warfarin prescribing information identifies >230 reported drug interactions
 - Many more should be anticipated
 - >300 known/reported DIs mentioned in one major medical reference (Micromedex Healthcare Series)
- Until proven otherwise, all new drug entities should be carefully monitored
- Interactions can be severe (potentially life-threatening)
 - Narrow therapeutic index of warfarin
- When used properly, warfarin has been shown to be safe and effective anticoagulation therapy

Auditon Question

You are not familiar with drug X. How would you determine if a drug interaction is likely between drug X and warfarin?
- a. Check drug X prescribing information
- b. Evaluate metabolic characteristics of drug X
- c. Review case reports through medline
- d. Request information from the manufacturer’s of warfarin
- e. All of the above

Coumadin (warfarin)

- Synthesized at University of Wisconsin
- Derived from Wisconsin Alumni Research Foundation and ARIN from “heparin”
- Reversibly binds and inhibits enzymes which convert inactive vitamin K to active vitamin K
- Decreases production of vitamin K-dependent clotting factors II, VII, IX, and X
- Decreases production of natural anticoagulants protein C and S
Vitamin K Mechanism of Action

- **Vitamin K cycle**: Warfarin blocks the conversion of vitamin K epoxide to vitamin K.

Warfarin Pharmacokinetics

- **Racemic mixture of R- and S-warfarin**
- **S-warfarin 5x more potent, but eliminated more rapidly**
- **Well absorbed (100% bioavailability)**
- **Highly protein bound to albumin**
- **Metabolized by:**
 - S-warfarin-2C9
 - R-warfarin-1A2, 2C19, 3A4
- **Average half-life 36-42 hours**

Warfarin Metabolism

- **CYP-1A2**: primary
- **CYP-3A4**: minor
- **CYP-2C9**: very minor
- **CYP-2C19**: very minor

Mechanisms for Drug Interactions

- **Pharmacokinetic Mechanisms**
 - **Enzyme inductions or inhibition**
 - Induction: metabolic activity is enhanced
 - Inhibition: metabolic activity is diminished
 - **Protein binding**
 - Protein bound drugs are inactive
 - If a second drug displaces warfarin from it’s binding sites, anticoagulation may be enhanced

Pharmacokinetic mechanisms of drug interactions

- **Reduced absorption/bioavailability**: cholestyramine
- **Alterations in protein binding**: phenytoin
- **Alterations in metabolism**
 - Enzyme induction: rifampin, barbiturates, carbamazepine
 - Enzyme inhibition: fluconazole, cimetidine, erythromycin, ciprofloxacin
Pharmacokinetic mechanisms of drug interactions (cont.)
- Stereoselective alterations in metabolism (R or S enantiomer)
 - S is 5 times more potent
 - metronidazole (S), SMP-TMP (S), omeprazole (R), cimetidine (R),
 - amiodarone (R & S)
- Alterations in plasma clearance or excretion
 - Thyroid hormones (ex. levothyroxine)

Pharmacodynamic mechanisms of drug interactions
- **Drug synergism**: increased risk of bleeding
 - Antiplatelet drugs (ex. clopidogrel)
 - NSAIDS including COX-2 Inhibitors
- **Drug antagonism**: block absorption of warfarin, supplementation of vitamin K
 - Enteral feeds
 - Dietary supplements

Enzyme Inhibitors P450

<table>
<thead>
<tr>
<th>CYP1A2</th>
<th>CYP3A4</th>
<th>CYP2C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimetidine</td>
<td>Clarithromycin</td>
<td>Amiodarone</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Fluconazole</td>
<td>Metronidazole</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Erythromycin</td>
<td>SMZ-TMP DS</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>Itraconazole</td>
<td>Fluconazole</td>
</tr>
<tr>
<td>Zileuton</td>
<td>Fluoxetine</td>
<td>Disulfiram</td>
</tr>
</tbody>
</table>

Enzyme Inducers P450

<table>
<thead>
<tr>
<th>CYP1A2</th>
<th>CYP3A4</th>
<th>CYP2C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbiturates</td>
<td>Barbiturates</td>
<td>Barbiturates</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Carbamazepine</td>
<td>Carbamazepine</td>
</tr>
<tr>
<td>Cigarette smoke</td>
<td>Griseofulvin</td>
<td>Phenytoin</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Primidone</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Primidone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drug interactions with OTC’s
- **Examples:**
 - NSAIDS (IBU, Naproxen, ASA)
 - APAP
 - Omeprazole
 - Cimetidine
 - Bismuth subsalicylate (Salicylates)
 - Dietary Supplements (Ensure, Boost)

Warfarin interactions with OTCs
- **NSAIDs** (ex. IBU, ASA, Naproxen)
- **Caution when NSAIDs administered with warfarin**
 - NSAIDs inhibit platelet aggregation
 - ASA – Irreversible inhibition (life of the platelet)
 - Other NSAIDS (ASA, Naproxen) – Reversible inhibition
 - NSAIDs can cause GI ulcers
 - Resulting in bleeding
 - Specific drug-drug interactions may alter PT/INR
Warfarin-APAP interactions
- Suggested in case reports
- Verified in clinical trials
- Mechanism: Unknown – possible enzyme inhibition with increased INR
- Comparative to Warfarin-ASA/NSAIDs
 - Inhibit platelet function
 - Injury to GI mucosa

Factors Affecting Sensitivity to Warfarin

Increase INR
- Hyperthyroidism
- Low Vitamin K diet
- Malnutrition
- Age > 75yo
- Diarrhea/vomiting
- Acute Infection
- Acute ETOH use
- Stress

Decrease INR
- Hypothyroidism
- High Vitamin K diet
- Tobacco (cigarettes)
- Chronic ETOH use

Drug Interactions with Dietary Supplements
- Herbal/Botanical Products
 - Herbal products may affect the coagulation system
 - May enhance or diminish warfarin activity
 - Anticoagulation
 - Platelet actions
 - Few studies have evaluated warfarin-herbal interactions
 - Manufacturing of herbals is not scrutinized by the FDA

Drug Interactions: Patient Considerations
- Consider how the drug works, metabolism, and protein binding
- Intensified monitoring
 - Initiation of concomitant drug therapy
 - Discontinuation of concomitant drug therapy
- Drug history
 - Prescription Meds
 - PRN Meds
 - OTC and supplements/herbals

Drug Interactions: Patient Considerations (cont.)
- Absence of evidence is not evidence of absence
- There is no such thing as a “typical response” to a drug interaction
- Expect variability
 - in patient susceptibility
 - in magnitude of response
 - in time of onset
 - in duration of effect

Monitoring Pearls
- Do not assume an interaction will not occur just because it has not been reported
- Consider metabolic characteristics of all new drugs and their potential to interact with warfarin
- Evaluate drug therapy at every visit regardless of INR
New Oral Antithrombotic Drugs

DRUG INTERACTIONS

Anti-factor Xa inhibitors
- Rivaroxaban (Xarelto)
- Apixaban (Eliquis)

Direct thrombin inhibitors
- Dabigatran (Pradaxa)

Dabigatran (Pradaxa)
- The concomitant use of Pradaxa with P-gp inducers (e.g., Rifampin) reduces exposure to dabigatran and should generally be avoided. The concomitant use of P-gp inhibitors such as ketoconazole, verapamil, amiodarone, quinidine, and clarithromycin do not require dose adjustments.
- Not metabolized by CYP-450 isoenzymes

Rivaroxaban (Xarelto)
- Rivaroxaban is a substrate of P-glycoprotein (P-gp) and is metabolized primarily by CYP3A4. Inhibitors and inducers of these CYP450 enzymes or transporters may lead to changes in rivaroxaban exposure.

Drugs that inhibit CYP3A4 enzymes and drug transport systems: Avoid concomitant administration of Xarelto with combined P-gp and strong CYP3A4 inhibitors (e.g., Ketoconazole, Itraconazole, Lopinavir/Ritonavir, Ritonavir, Indinavir/Ritonavir, and Conivaptan), which cause significant increases in rivaroxaban exposure that may increase bleeding risk.
Apixaban (Eliquis)

- Apixaban is a substrate of both CYP3A4 and P-gp.
 - Inhibitors of CYP3A4 and P-gp increase exposure to apixaban and increase the risk of bleeding.
 - Inducers of CYP 3A4 and P-gp decrease exposure to apixaban and increase the risk of stroke or VTE exacerbation

Case Presentation #1

- AT is an 86yo female being followed by the anticoagulation clinic for the indication of A.Fib.
- PMH: A.Fib, HN, Hypercholesterolemia, DM-II, gout
- Current Rx Meds:
 - Allopurinol 300mg 1 tab once daily
 - Furosemide 40mg 1 tab once daily
 - Metoprolol Succ 150mg 1 tab twice daily
 - Potassium Cl 20mEq once daily
 - Hydralazine 25mg 1 tab q 8h
 - Novolin 70/30 insulin 55U AM & 40U PM daily
 - Rosuvastatin 5mg 1 tab every other day
 - Clopidogrel 75mg 1 tab once daily

Case Presentation #1 (cont.)

- OTC Meds
 - APAP PRN
 - MVT
 - Green Tea
- Anticoagulation
 - Warfarin 5mg one tab daily x 1 yr
- The Anticoagulation Clinic is informed that the following med is being added to AT’s med list:
 - Amiodarone 400mg bid

Audience Questions Case #1

- How many potential drug interactions can you identify in AT’s med list?
 - a. One
 - b. Two
 - c. Three
 - d. Four or more

Audience Questions Case #1

- When should we schedule AT’s next PT/INR visit?
 - a. Recheck INR in 1 month
 - b. Recheck INR in 2 weeks
 - c. Recheck INR in 5 days
 - d. Recheck INR tomorrow
Case Presentation #2

- ML is a 67 yo male with recent idiopathic DVT
- PMH: HTN, DM-II, Hypercholesterolemia, elevated triglycerides
- Anticoagulation:
 - Warfarin 10mg Tu, 5mg W, Sa, 7.5mg X 4d
- OTC Meds:
 - Omega-3 Fatty 1 tab daily
 - MVT with Calcium 1 tab daily
 - APAP PRN

Case Presentation #2 (cont.)

- Current Rx Meds:
 - Metformin 500mg 1 tab bid
 - Metoprolol 50mg 1 tab bid
 - Atorvastatin 80mg 1 tab daily
 - Lisinopril 40mg 1 tab bid
 - Fenofibrate 145mg 1 tab daily
 - Clonidine 0.1mg 1 tab bid
 - Amlodipine 10mg 1 tab daily
 - Isosorbide Mon 60mg 1 tab daily
 - Griseofulvin 500mg 1 tab daily x 6 weeks

Case Presentation #2 (cont.)

- The Anticoagulation Clinic is informed on that his griseofulvin med is being d/c’d effective immediately.

Audience Questions Case #2

- How many potential drug interactions can you identify in ML’s med list?
 - a. One
 - b. Two
 - c. Three
 - d. Four or more

Audience Questions Case #2

- When should we schedule ML’s next PT/INR visit?
 - a. Recheck INR in 1 month
 - b. Recheck INR in 2 weeks
 - c. Recheck INR in 5 days
 - d. Recheck INR tomorrow

Case Presentation #3

- JM is a 57 yo female with AVR
- PMH: HTN, Hypercholesterolemia, osteoarthritis
- Anticoagulation:
 - Warfarin 7.5mg MF & 5mg x 5 days
- OTC Meds:
 - MVT tab daily
 - Calcium 600mg 1 tab bid
 - APAP 1gm tid
Case Presentation #3 (cont.)

- Current Rx Meds:
 - Metropolol 50mg 1 tab bid
 - Lisinopril 40mg 1 tab bid
 - HCTZ 25mg 1 tab daily
 - Simvastatin 20mg 1 tab daily

Audience Questions Case #3

- JM decides to self-treat what is believed to be a vaginal yeast infection with miconazole nitrate vaginal cream x 7 days.

- Should you be concerned about a vaginally administered medication like miconazole with warfarin?
 - a. Yes
 - b. No
 - c. Undecided

Audience Questions Case #3

- When should we schedule JM’s next PT/INR visit?
 - a. Recheck INR in 1 month
 - b. Recheck INR in 2 weeks
 - c. Recheck INR in 3-4 days
 - d. Recheck INR tomorrow

Questions?

References

- Xarelto [Prescribing Information], Raritan, NJ; Janssen Pharmaceuticals, Inc: December 2011
- Pradaxa [package insert], Ridgefield, CT: Boehringer Ingelheim Pharmaceutical Inc; October 2010
- Apixaban [package insert]
- Pharmacist’s Letter Document #261101, Vol. 26 Nov 2010